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1. Introduction 

1.1 Background Information  

Neuroevolution algorithms are one of the significant 

achievements in the field of artificial intelligence and 

robotics. They employ the concepts from natural 

selection and enhance neural networks in a way that it 

makes it more adaptive and responsive to variety of 

intelligent behaviors. These algorithms are very 

important for robots in object manipulation, pattern 

recognizing etc. The ability of these algorithm to 

evolve is particularly very important in real-life 

scenarios for the robots as the environment around is 

constantly changing. In these instances, traditional 

method of learning fails but these neuroevolutionary 

methods enable us to tackle them.  

1.2 Problem Statement 

Neuroevolution algorithms evolve in two distinct 

ways. The first method involves evolving or improving 

by merely adjusting the weights of neurons in a fixed 

network, based on the belief that this alone can deal 

with complex tasks. On the other hand, the second 

method not only alters the weights but also changes the 

network's topology to address complex problems. The 

effectiveness of these two methods compared to each 

other in real-world situations remains a topic of debate. 

1.3 Purpose of the Analysis 

The goal of this analysis is to systematically collect 

and summarize existing research on neuroevolution 

algorithms, focusing on those that evolve only the 

connection weights versus those that also modify the 

network topology or structure. The aim is to determine 

which approach shows more efficacy and potential in 

robotic applications, assessing their performance, 

adaptability, and practicality in handling complex tasks 

in robotics. 

1.4 Research Questions/Hypotheses  

The analysis is guided by the following research 

questions: 

• RQ1: What are the neuroevolution algorithms 

that specifically focus on weight evolution 

within a fixed topology, and how have they 

been applied in robotics? 

• RQ2: Which neuroevolution algorithms are 

capable of evolving both the network topology 

and weights, and what contributions have they 

made to advancements in robotics? 

• RQ3: In terms of performance metrics and 

practical implementation, how do the two 

approaches compare within the field of 

robotics? 

2. Methodology 

This section outlines the systematic approach adopted 

for conducting the literature search, selection, and 

analysis pertinent to neuroevolution algorithms in 

robotics. 

2.1 Literature Search  

The literature search was conducted across several 

academic databases. The databases included IEEE 

Xplore, ScienceDirect, SpringerLink, Aston Library 

and the ACM Digital Library. Additional sources were 

identified through the references of key articles. The 

search terms used were combinations and variations of 

the following: "neuroevolution algorithms," 

"evolutionary neural networks," "fixed topology," 

"weight evolution," "topology evolution," "robotics 

application," and "adaptive robotics." Boolean 

operators (AND, OR) were utilized to refine the 

search. 

2.2 Selection Criteria  

The inclusion criteria were: 

• Peer-reviewed articles and papers written in 

English. 

• Studies that explicitly discussed neuroevolution 

algorithms applied to robotics. 

• Articles that provided clear results on the 

performance and adaptability of the algorithms. 

The exclusion criteria were: 

• Non-peer-reviewed articles and grey literature. 

• Papers that did not focus on neuroevolution 

algorithms or their application in robotics. 

• Studies lacking empirical results or proper 

methodological descriptions. 

Duplicates were removed, and an initial title and 

abstract screening were conducted to assess relevance.  



3. Evolution of Connection Weights in Fixed 

Topologies 

3.1 Overview  

In the world of neuroevolution, a key method involves 

fine-tuning the signal weights in neural networks 

whose structure doesn't change. This simpler approach 

speeds up the process of finding effective solutions by 

not altering the network's structure. It's based on the 

idea that even a fixed network design can handle 

various tasks effectively, just by adjusting these signal 

strengths. 

3.2 Key Algorithms 

This approach is characterized by several algorithms. 

Genetic Algorithms (GAs), pioneered by Holland in 

1992,Particle Swarm Optimization (PSO) and 

Evolution Strategies (ES) 

3.3 Applications in Robots: 

In autonomous vehicles, it aids in real-time navigation 

and obstacle avoidance, as evidenced in studies by M. 

R. C. Qazani, M. Karkoub, H. Asadi, C. P. Lim, A. W. 

-C. Liew, and S. Nahavandi (2022).The study focuses 

on using the multi-objective Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) for tuning the weights 

of a nonlinear Model Predictive Controller (MPC) in 

AVs. The researchers employed the multi-objective 

NSGA-II algorithm to tune the weights of the MPC-

based controller. 

The method's adaptability and effectiveness are 

underscored by its wide range of applications in 

tackling various challenges in robotics. 

3.4 Advantages and Limitations  

The primary advantage of evolving weights within 

fixed network structure is computational efficient. 

With a reduced search space, algorithms can often find 

optimal or near-optimal weight more quickly than 

those that also evolve topologies. Additionally, this 

approach allows for greater control over the network 

architecture, which can be beneficial to specific tasks. 

However, there are also significant limitations to this 

approach. A fixed topology may not be capable of 

expressing the range of diversity required for more 

complex tasks. There is also a risk of overfitting. 

Moreover, by not evolving the topology potentially 

more innovative and efficient network structures might 

be overlooked. 

4. Evolution of Both Topology and Weights 

4.1 Overview 

Evolving both the network structure and connection 

strengths in neuroevolution offers a more diverse and 

potentially better method. This approach goes beyond 

just fine-tuning weights it also supports the creation of 

new network structures.  

4.2 Key Algorithms 

The most prominent algorithm in this category is 

NEAT (NeuroEvolution of Augmenting Topologies). 

Developed by Stanley and Miikkulainen (2002), 

NEAT starts with simple networks and gradually 

improves them by introducing new nodes and 

connections through mutations. This allows the 

network to grow in complexity in response to the 

requirements of the tasks . Other significant algorithms 

include HyperNEAT which was introduced as a variant 

for NEAT by Kenneth O. Stanley et al (2009) which 

allows for the evolution of large-scale neural networks. 

 

Figure 1: Showing the Evolution of Network Topology 

NEAT Stanley and Miikkulainen (2002) 

 

 

4.3 Applications in Robotics  

An extended version of HyperNEAT called ES-

HyperNEAT has been used to develop control systems 

for legged robots P. Reyes and M. -J. Escobar 2019, 

allowing them to adapt their gait to different terrains. 

Additionally, these techniques are employed for 

evolving behaviors in object manipulation or adaptive 

interaction, as demonstrated by Jalali et al (2019) 

where the authors explored the application of the 

Evolutionary Multi-Verse Optimizer (EMVO) 

algorithm for autonomous robot navigation. 



4.4 Advantages and Limitations  

Adjusting both the structure and signal strengths of 

neural networks allows creating complex designs for 

specific tasks, making robots more efficient and 

effective. However, it's not without limitations, it 

requires exploring a much larger range of possibilities 

or it has a larger search space, which can increase the 

time and computing power needed. Also, these 

complex networks can be harder to understand and 

might not always adapt well to new situations or tasks. 

5. Comparative Analysis 

5.1 Comparative Framework  

To compare the performance of neuroevolution 

algorithms that evolve both topology and weights with 

those that evolve only weights. 

5.2 Performance Comparison 

• Fixed Topology Algorithms: For instance, in 

robotic path planning, these algorithms can 

navigate simple environments efficiently. As 

was demonstrated in the work of Floreano, D. 

and Mondada, F., (1996). This study 

demonstrates the efficiency of fixed topology 

algorithms in structured environment. Where 

they evolved neural networks to control a real 

mobile robot. 

• Evolving Topology and Weights Algorithms:  

These algorithms are more suited for complex, 

dynamic environments., real-time 

neuroevolution in the NERO video game 

Stanley, K.O., Bryant, B.D. & Miikkulainen, 

R., (2005), showcase their effectiveness in 

dynamic environments.  

5.3 Practicality in Robotics 

• Fixed Topology Algorithms: The practicality 

of these algorithms lies in their straightforward 

implementation and lower computational 

demands. They are well-suited for applications 

where the task environment is relatively stable 

and predictable as demonstrated in the studies 

conducted by Florean, D. and Mondada, F., 

(1996). Which highlights the application of 

neuroevolution algorithm to adapt robots to 

their environment especially fixed topology 

neuroevolution algorithms.  

• Evolving Topology and Weights 

Algorithms.: These algorithms shine in 

scenarios requiring adaptability, such as search 

and rescue robots operating in unpredictable 

environments. And in the in the work of 

Ahmed Aly, J. Dugan (2018), where they tried 

to apply neuroevolution to optimize robot 

navigation systems in dynamic environments 

instead of derivative-based optimization 

techniques such as Stochastic Gradient Descent 

hence highlighting the efficiency 

neuroevolution algorithms . 

5.4 Innovations and Developments  

Recent advances in neuroevolution have brought about 

multi-objective methods for predicting paths in self-

driving cars. A notable study by Qazani et al (2022) 

utilized the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II), initially developed by Deb et al (2002), 

to fine-tune the weights of   a linear model predictive 

controller (MPC) in autonomous vehicles for achieve a 

balance between energy usage and motion comfort for 

autonomous vehicle users. Further the work of J. D. 

Schaffer (2020) shows how the evolution of the 

symmetry of the network topology can affect robotic 

sensory-motor decision. These are some of the new 

innovations being made to discover more utilization of 

neuroevolution algorithm in solving complex 

computational problems.  

6. Discussion 

6.1 Summary of Findings  

The literature analysis on neuroevolution algorithms in 

robotics revealed two distinct approaches: evolving 

only the weights within a fixed network topology and 

evolving both the topology and weights. Key findings 

include: 

• Fixed Topology Approach:  

• Evolving Topology and Weights: In robotics 

applications, evolving both topology and 

weights has practically better adaptability and 

potential, particularly in dynamic and 

unpredictable environments. 

6.2 Theoretical and Practical Implications  

The comparison highlights the importance of structural 

flexibility in neural network design for adaptive 

behaviors in robotics. Practically, it suggests that for 

complex, real-world applications in robotics, 

algorithms that evolve both topology and weights 



might be more suitable despite their higher 

computational demand. 

7. Conclusion 

The main findings from this comparative analysis are 

as follows: 

1. Fixed Topology Approach: This method, 

while demanding less computation power and 

is faster in converging to the optimal solution, 

can be limited by its limitation of not being 

able to change the structure of the fixed 

structure according to the demands of the task. 

It works well for specific, well-defined 

problems but lacks the flexibility needed for 

more dynamic environments. 

2. Evolving Topology and Weights: This 

approach, employed by algorithms like NEAT 

Stanley, K.O. and Miikkulainen, R (2002) 

offers greater adaptability and potential for 

innovation in network structure. It is however 

more demanding when it comes to computation 

power but it can evolve more complex and 

efficient solutions suitable for more broad and 

continuously changing problems. 

The conclusion drawn from this analysis is that while 

both approaches have their benefits, the evolving 

topology and weights approach holds more potential 

for complex and dynamic tasks in robotics. This 

approach aligns with the current trends in robotics that 

demand high adaptability, precision, and efficiency. As 

we are progressing into the future, where robots are 

designed to handle really complex tasks. 
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